Artificial Neural Networks for the Diagnosis of Aggressive Periodontitis Trained by Immunologic Parameters
نویسندگان
چکیده
There is neither a single clinical, microbiological, histopathological or genetic test, nor combinations of them, to discriminate aggressive periodontitis (AgP) from chronic periodontitis (CP) patients. We aimed to estimate probability density functions of clinical and immunologic datasets derived from periodontitis patients and construct artificial neural networks (ANNs) to correctly classify patients into AgP or CP class. The fit of probability distributions on the datasets was tested by the Akaike information criterion (AIC). ANNs were trained by cross entropy (CE) values estimated between probabilities of showing certain levels of immunologic parameters and a reference mode probability proposed by kernel density estimation (KDE). The weight decay regularization parameter of the ANNs was determined by 10-fold cross-validation. Possible evidence for 2 clusters of patients on cross-sectional and longitudinal bone loss measurements were revealed by KDE. Two to 7 clusters were shown on datasets of CD4/CD8 ratio, CD3, monocyte, eosinophil, neutrophil and lymphocyte counts, IL-1, IL-2, IL-4, INF-γ and TNF-α level from monocytes, antibody levels against A. actinomycetemcomitans (A.a.) and P.gingivalis (P.g.). ANNs gave 90%-98% accuracy in classifying patients into either AgP or CP. The best overall prediction was given by an ANN with CE of monocyte, eosinophil, neutrophil counts and CD4/CD8 ratio as inputs. ANNs can be powerful in classifying periodontitis patients into AgP or CP, when fed by CE values based on KDE. Therefore ANNs can be employed for accurate diagnosis of AgP or CP by using relatively simple and conveniently obtained parameters, like leukocyte counts in peripheral blood. This will allow clinicians to better adapt specific treatment protocols for their AgP and CP patients.
منابع مشابه
Predicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests
In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty) and three relative densities (%30, %50, and %90) were injecte...
متن کاملESTIMATING THE VULNERABILITY OF THE CONCRETE MOMENT RESISTING FRAME STRUCTURES USING ARTIFICIAL NEURAL NETWORKS
Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vuln...
متن کاملHYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملExtracting Material Information from the CT Numbers by Artificial Neural Networks for Use in the Monte Carlo Simulations of Different Tissue Types in Brachytherapy
Background: The artificial neural networks (ANNs) are useful in solving nonlinear processes, without the need for mathematical models of the parameters. Since the relationship between the CT numbers and material compositions is not linear, ANN can be used for obtaining tissue density and composition.Objective: The aim of this study is to utilize ANN for determination of the composition and mass...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کامل